a2 United States Patent

Dayka et al.

US009251338B2

US 9,251,338 B2
*Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SCALABLE, HIGHLY AVAILABLE,
DYNAMICALLY RECONFIGURABLE
CRYPTOGRAPHIC PROVIDER WITH
QUALITY-OF-SERVICE CONTROL BUILT
FROM COMMODITY BACKEND PROVIDERS

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: John C. Dayka, New Paltz, NY (US);
Michael J. Jordan, Hurley, NY (US);
James W. Sweeny, Millbrook, NY (US);
Tamas Visegrady, Zurich (CH)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/663,517

Filed: Oct. 30, 2012

Prior Publication Data

US 2013/0055295 Al Feb. 28,2013

Related U.S. Application Data

Continuation of application No. 13/095,471, filed on
Apr. 27, 2011.

Int. CI.

GOG6F 9/46 (2006.01)

GOG6F 21/53 (2013.01)

U.S. CL

CPC e, GOG6F 21/53 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,852,666 A 12/1998 Miller et al.
5,956,725 A 9/1999 Burroughs et al.
5,995,625 A 11/1999 Sudia et al.
6,135,646 A 10/2000 Kahn et al.
6,335,972 Bl 1/2002 Chandersekaran et al.
6,412,069 Bl 6/2002 Kavsan
6,484,259 B1 11/2002 Barlow
6,490,679 B1 12/2002 Tumblin et al.
6,496,928 Bl 12/2002 Deo et al.
6,732,277 B1* 5/2004 Vandergeestet al. 726/19
7,079,648 B2 7/2006 Griffin et al.
7,162,476 Bl 1/2007 Belair et al.
7,200,756 B2 4/2007 Griffin et al.
7,369,657 B2 5/2008 FEldeeb
7,620,821 B1 11/2009 Grohoski et al.
7,706,838 B2 4/2010 Atsmon et al.
2001/0018746 Al 8/2001 Lin
2002/0016770 Al* 2/2002 Flenley et al. .. 705/43
2002/0031230 Al* 3/2002 Sweetetal. 380/278
(Continued)

Primary Examiner — Shih-Wei Kraft
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
William A. Kinnaman, Jr.

57 ABSTRACT

Exemplary embodiments include a method for remapping
subsets of host-centric application programming interfaces to
commodity service providers, the method including receiving
a commodity service providers object, embedding the com-
modity service providers object with a handle, transforming
the handle into a serialized object readable by a hardware
security module, generating a virtualized handle from the
transformed handle, selecting a target hardware security
module based on characteristics of the serialized object and
mapping the virtualized handle to the target hardware security
module.

3 Claims, 3 Drawing Sheets

105
™ WM“L_'—_V
{ FRDIECRENTED | HOSTRESTENT
|t STAETR
14 Wi a8
i HOSTCENOUE
! T wA
SWEEE LR
HOST 1 s
LERARY !
i 12
IR TOKER REGOVERY
e VODUEDEVEER B0 435
TRNOLE
’f DATIBATE|
==
55 YODULE SPBRFIG
[HANDLER
HODULER
| SWIERL MG SRS
| wopazs 6 VG gl e | HORUES
| W Tw w g R e 7
| coNTRQ
. T e |
| B .
g
e] B b &

US 9,251,338 B2
Page 2

(56)

2002/0056044
2002/0071567
2002/0095571
2002/0120842
2002/0152378
2003/0021417
2003/0023957
2003/0111528
2003/0154375
2003/0236987
2004/0001595
2004/0003246

References Cited

U.S. PATENT DOCUMENTS

Al* 5/2002 Andersson
Al 6/2002 Kurn et al.

Al 7/2002 Bradee

Al 8/2002 Bragstad et al.
Al 10/2002 Wallace et al.
Al 1/2003 Vasic et al.
Al 1/2003 Bau et al.

Al 6/2003 Sato et al.

Al 8/2003 Yang

Al 12/2003 Griffin et al.
Al 1/2004 Hopkins et al.
Al 1/2004 Hopkins et al.

....... 713/189

2004/0039924 Al*
2004/0039925 Al
2004/0120525 Al
2005/0039190 Al
2005/0071652 Al
2005/0102509 Al
2005/0188384 Al
2006/0015727 Al
2006/0253497 Al
2006/0288232 Al
2007/0234033 Al*
2007/0282979 Al*
2008/0130895 Al
2009/0204964 Al
2010/0104101 Al

* cited by examiner

2/2004
2/2004
6/2004
2/2005
3/2005
5/2005
8/2005
1/2006
11/2006
12/2006
10/2007
12/2007
6/2008
8/2009
4/2010

Baldwin et al. 713/189
McMillan et al.

Miskimmin et al.

Rees et al.

de Jong

Fascenda

Yogaratnam et al.

Birk et al.

Abali et al.

Ho et al.

Bade ..oooooviiiiiiiie 713/150
Tuel oo 709/219
Jueneman et al.

Foley et al.

Dickinson et al.

US 9,251,338 B2

Sheet 1 of 3

Feb. 2, 2016

U.S. Patent

%

g3

weed GFG
o

oy
;

U.S. Patent

Feb. 2, 2016 Sheet 2 of 3

C START D)
Y

210~ TRANSFORM HANDLES TO HSM-
READABLE SERIALIZED OBJECTS
Y
220~ SELECT TARGET HSM
Y
20~ RETRIEVE VIRTUALIZED HANDLE
¥
240~ DESERIALIZE STATE
Y
250~ RESTORE SERIALIZE STATE
Y
C__ s D>

FIG. 2

US 9,251,338 B2

US 9,251,338 B2

Sheet 3 of 3

Feb. 2, 2016

U.S. Patent

301A3d
1NdLNO

%

0ve

05¢
- Go¢
} s A
Y \
J Y43TI04INOD | 50 FOVAL3IN |
~—1 INdLNO/LNdNI YHOMIIN 008
6861
43TI04INOD i
43TI04LNOD i v 0
et AV d0353008d T\ _gpg
\
0l
0¢

00€

US 9,251,338 B2

1
SCALABLE, HIGHLY AVAILABLE,
DYNAMICALLY RECONFIGURABLE
CRYPTOGRAPHIC PROVIDER WITH
QUALITY-OF-SERVICE CONTROL BUILT
FROM COMMODITY BACKEND PROVIDERS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/095,471, filed Apr. 27, 2011, the disclosure of
which is incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to cryptography, and more
specifically, to implementation of subsets of enterprise-ori-
ented cryptographic Application Programming Interfaces
(APIs) from off-the-shelf, module-centric cryptographic ser-
vice providers of below-enterprise reliability and commodity
APIs

Mainframe cryptography follows an unusual provider
model by maintaining centralized keystores on the host, rely-
ing on proprietary stateless backends. Host APIs reflect this
difference, relying on host-opaque keystores and key tokens,
externalizing stateless services to callers. Module-centric
commodity cryptographic service providers (CSPs) operate
in a different model, relying on module-resident secrets and
APIs which reflect this worldview.

SUMMARY

Exemplary embodiments include a method for remapping
subsets of host-centric application programming interfaces to
commodity service providers, the method including receiving
a commodity service providers object, embedding the com-
modity service providers object with a handle, transforming
the handle into a serialized object readable by a hardware
security module, generating a virtualized handle from the
transformed handle, selecting a target hardware security
module based on characteristics of the serialized object and
mapping the virtualized handle to the target hardware security
module.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates an exemplary request data flow illustrat-
ing an exemplary method for providing subsets of enterprise-
oriented cryptographic APIs from oft-the-shelf, module-cen-
tric cryptographic providers of below-enterprise reliability
and commodity APIs, in accordance with exemplary embodi-
ments.

FIG. 2 illustrates a flow chart of method for providing
subsets of enterprise-oriented cryptographic APIs from off-

10

15

20

25

30

35

40

45

50

55

60

65

2

the-shelf, module-centric cryptographic providers of below-
enterprise reliability and commodity APIs, in accordance
with exemplary embodiments.

FIG. 3 illustrates an exemplary embodiment of a system for
remapping relevant subsets of host-centric APIs to commod-
ity CSPs’ interfaces.

DETAILED DESCRIPTION

Exemplary embodiments include systems and methods
that remap relevant subsets of host-centric APIs to commod-
ity CSPs’ interfaces, in a way which provides enterprise ser-
vice-level guarantees, relying on commodity-API features.
Conventionally, standard APIs can be restructured to fit enter-
prise CSPs (with proprietary, but commodity-resembling
APIs). In exemplary embodiments, the same functionality
can be provided with off-the-shelf module-centric CSPs. Fur-
thermore, the systems and methods described herein enable
remapping to commercial, off-the-shelf CSPs to provide
similar services, with well-defined exceptions, and minimize
the overhead in exemplary usage patterns. In exemplary
embodiments, the systems and methods described herein
embed handles that are implemented by commodity CSPs (to
access) within host-opaque regions. Commercial backends
are restructured to act as a distributed cache of a host-resident
centralized keystore. The exemplary systems and methods
described herein can replace host-centric, stateless API calls
with a number of module-native ones, allowing coexistence
of existing, enterprise-oriented backends and commodity
hardware.

FIG. 1 illustrates an exemplary request data flow 100 illus-
trating an exemplary method for providing subsets of enter-
prise-oriented cryptographic APIs from off-the-shelf, mod-
ule-centric cryptographic providers of below-enterprise
reliability and commodity APIs, in accordance with exem-
plary embodiments. The flow 100 includes transforming
handles 105 into hardware security module (HSM) readable
objects in a handle-oriented host library 101, selecting a
target HSM in a stateless host library 102 depending on how
the handle 105 was transformed, retrieving a virtualized
handle 125 in the stateless host library 102, de-serializing the
state of the handle 105 in the target HSM that are stateful
modules 103, and restoring a stateful backends’ serialized
state from virtualized handle 125 in a host token recovery 120
in the stateless host library 102. A handle 105 is received by
a host-resident key token 110 in the handle-oriented library
101. In exemplary embodiments, the host-resident key token
110 includes application/host-opaque data 111. The trans-
formed handle 105 is then received by the CSP dispatch 115,
which dispatches the transformed handle 105 to a virtual
handle 125 in the host token recovery 120, as a module
identifier to a handle database 130 having module-specific
handles 131, and to a stateless module 150 having a master
key 151 in the stateful modules 103. In exemplary embodi-
ments, the stateless host library 102 further includes an object
store 135 having several objects 136. Within the stateless host
library 102, the transformed handle is passed as a virtualized
handle 125 to the handle database 130. The handle 105 is then
passed to the stateful modules 103 into several modules 140,
each module 140 having control keys 141, which are persis-
tent, and data keys 142 cached from a host system. The
modules 140 further include a wrapping key 143. As
described above, the handle is then passed back to the host
token recovery where a serialized state is restored from the
virtual handle 125.

FIG. 2 illustrates a flow chart of a method for providing
subsets of enterprise-oriented cryptographic APIs from off-

US 9,251,338 B2

3

the-shelf, module-centric cryptographic providers of below-
enterprise reliability and commodity APIs, in accordance
with exemplary embodiments. The method 200 illustrates the
overall exemplary flow as shown in FIG. 1, and is described
further herein. At block 210, the method 200 transforms
handles 105 into HSM-readable serialized objects in the
stateful modules 103. At block 220, the method 200 selects a
target HSM based on object characteristics in the stateful
modules 103. In exemplary embodiments, block 210 is trans-
parent to other host components, driven by object attributes.
At block 230, the method 200 retrieves application-opaque
virtualized handle 125 for the simulated-stateless keys as
shown in the stateful modules 103. At block 240, the method
200 de-serializes the state and processes request-response
flow in stateful backends of the host system. At block 250, the
method 200 restores the stateful backends’ serialized state
from the virtualized handle 125, which takes care of session
tracking and similar temporal control.

Exemplary embodiments include a key representation
infrastructure for enterprise applications, built on stateful
crypto providers (“modules”, as shown in the stateful mod-
ules 103), which do not meet enterprise requirements. The
systems and methods described herein implement commod-
ity backend modules that store keys internally, without redun-
dancy. The object store 135, which is a host-resident, virtu-
alized, scalable object store, is emulated through stateful
modules 103. In exemplary embodiments, the systems and
methods described herein do not replicate an entire stateful
module to another one. Existing commodity providers, which
are not generally designed for high-availability computation,
do not offer standard methods to clone a module to another
one. In addition to lack of cloning, commodity providers with
module-resident secrets are inherently not scalable. In exem-
plary embodiments, the systems and methods described
herein store keys in host-resident, encrypted object stores and
are rerouted, even if the host-resident object store uses a
radically different interface from that of modules. The sys-
tems and methods described herein remap states between
host-resident (“stateless module”) and module-centric (simi-
lar to PKCS#11) backends. Optionally, if host-centric, state-
less emulations of commodity backends are available (such as
such as Enterprise PKCS#11 transforms off-the-shelf
PKCS#11 into a statelessness and scalable provider), host
functionality may be reduced (compared to cost of implemen-
tation on off-the-shelf commodity backends).

In exemplary embodiments, the systems and methods
described herein augment a dispatcher to implement API calls
of a virtualized, stateless API with stateful, single-instance
backends. Cryptographic applications, and emulate stateless
APIs that are implemented can include the following proper-
ties:

1. Keys and cryptographic sessions are stored encrypted,
on a highly-available host. All encrypted tokens are suf-
ficiently large to accommodate entire key material (but
not data or session state);

2. The API implements encrypted, “self-contained”
objects, maintaining all state on host-opaque encrypted
“blobs” on the host. Backends de-serialize objects using
transport-wrapping keys (TWKs);

3. Multiple backends” TWKs form a redundant group of
essentially disposable modules. Any module is capable
of'operating on a host-opaque blob, as long as it is loaded
with the proper TWK, the TWK corresponding to that of
the originating setup;

4. The host API does not generally externalize the number
and identity of modules. Host libraries are free to load-
balance across an arbitrary number of modules;

20

25

35

40

45

50

60

65

4

5. The system can scale throughput essentially unbounded,
as long as one can add modules. Observable throughput
is expected to increase linearly for a reasonable number
of modules;

6. With a host-resident object store, the aggregate system
can support an essentially unbounded number of
objects. Specifically, resource restrictions of individual
backends are not exposed to the host API. Since back-
ends de-serialize objects, and only need to maintain
per-request transient data, backends are lightly utilized,
except possibly for temporary storage (during request
processing); and

7. Applications must tolerate increased latency, as long as
the system provides the desired throughput scalability.

In exemplary embodiments, the systems and methods
described herein emulate a comparable highly available,
stateless API with commodity, module-centric cryptographic
APIs (such as PKCS#11). The stateful module-oriented inter-
faces differ from host-centric APIs as follows:

1. Modules store a finite amount of objects. Generally,
module resource limits are considerably (orders of mag-
nitude) below the size of enterprise object stores;

2. Module-resident objects (keys and sessions) are all ref-
erenced indirectly, through handles of moderate size
(typically, up to several words but not much larger).
Handles, by construction, are much smaller than the
keys or state they represent;

3. No convenient or standard facility can quickly clone
contents of a module into another one. (Cloning facili-
ties may exist, but they are generally too slow or proce-
durally inconvenient to perform during servicing regular
requests.); and

4. Modules with the same interface, but from different
models or vendors, may store sessions in incompatible
formats. The exemplary methods described herein do
not require modules to import or export sessions, and
provide session-migration functionality within host
libraries.

While sessions are not portable, the modules provide stan-
dard interfaces to migrate keys. Both import and export are
implemented, and can operate on a mixed set of backends as
long as one can generate and export keys. Multiple key
sources aid to ensure resiliency and throughput. Commodity
APIs expect a module to retain state, and do not provide
convenient state migration capabilities, while stateless APIs
expect the host to manage all state. As such, in exemplary
embodiments, the systems and methods described herein
include host libraries that provide equivalent capabilities on
top of module-centric management functionality to fully
emulate modules with stateless interfaces.

The systems and methods described herein emulate state-
less modules, backed with module-centric commodity APIs,
and the following fundamental properties are preserved:

1. Keys and related sensitive material in the clear on the
host system are not revealed. In case of stateful back-
ends, keys are usually indirect-addressed handles.
Handles may be revealed to host (library) code, as
handles are, from a module perspective, non-confiden-
tial. However, user data is not protected, since data is
observable in the clear to layers above the API;

2. The systems and methods described herein accommo-
date an essentially arbitrary number of simultaneously
active key objects, regardless of aggregate resource
capacity of all stateful backends. (The number of con-
currently utilized key objects can be constrained by
aggregate backend capacity);

US 9,251,338 B2

5

3. The systems and methods described herein utilize an
unbounded number of backends, without fundamental
scalability limits;

4. Key information is stored within a fault-resilient host
system. In case of backend failures, keys are restored
from the host to the backends without service interrup-
tion;

5. Requests are rerouted to either stateless or stateful mod-
ules without host applications noticing differences
between tokens. The system changes only application-
opaque data within key tokens. No further (i.e., applica-
tion-visible) differences between tokens destined for
stateless or stateful modules are required. Information
about the actual target module may be revealed through
variations in latency. Backend-specific latency is not
considered confidential;

6. The systems and methods described herein can add or
remove backends without notifying applications;

7. The systems and methods described herein do not store
a session’s (streaming, etc.) state within modules
between host API calls. All inter-call data is maintained
within the host, exporting and importing through back-
end APIs when callers request incremental services.

The systems and methods described herein implement
“atomic” operations, as long as API-level atomicity is
desired. Such composite operations are not necessarily
atomic at the module level, but the host library does not
expose the internal call sequence. Host applications tolerate
increased latency, if emulation on commodity backends
requires increasing it.

As described herein, the exemplary systems and methods
implement commodity backends, and do not require modifi-
cations to module firmware. Module-specific requirements
are enumerated in terms of typical module APIs, such as
PKCS#11 for stateful crypto devices:

1. Wrapping keys are synchronized between all backends
to unwrap key tokens. Wrapping keys are inserted dur-
ing initialization, and they may be retained within back-
ends indefinitely;

2. A related (symmetric) key allows key migration in and
out of stateful modules. These keys are synchronized
between backends, and they transport all possible object
(key) types. As described herein, only keys are trans-
ported, not sessions, between the host and commodity
providers (or implicitly, between modules). Therefore,
the equivalent of PKCS#11 WrapKey and UnwrapKey
services is implemented, but generally no session-trans-
port capabilities are implemented (which standard
PKCS#11 does not provide);

3. Confidential objects are stored primarily on the host.
Objects within backends are migrated into backends
first, with the exception of newly generated objects. In
exemplary embodiments, module-resident keystores are
implemented only as a cache of objects from the host-
resident object store 135. In addition to module require-
ments, a persistent host-resident mapping is imple-
mented between “virtual handles” (VHs) and actual
module handles. Host code can provide such a mapping
database, and independent host libraries access a single,
shared lookup database.

As shown in FIG. 1, the systems and methods described
herein process requests to stateful and stateless modules 103
in a similar fashion, hiding differences within a host-resident
library. For stateless modules, host-resident key tokens are
passed directly to modules, which are synchronized through a
shared Master Key. Key tokens are recovered within each
backend, and may be used internally. Recovered keys are

10

15

20

25

30

35

40

45

50

55

60

65

6

generally discarded, after they are removed from the hosting
HSM during a cache eviction, or upon servicing a request, and
these backends effectively maintain only infrastructure
(“control”) keys persistently, but store no persistent data keys.
In the infrequent case when a token is updated, its host copy
is changed as part of the response. Stateful modules address
module-resident objects through handles. Due to this indirec-
tion, application-opaque keys may contain similar handles
and address a host-resident database without host applica-
tions recognizing the replacement (as only host libraries, but
not applications, can access the wrapping key and therefore
inspect opaque regions). Host-resident key tokens with
embedded VHs are designated “fake-key tokens” (FKTs) as
they are used only indirectly, and do not themselves contain
key material.

The host dispatcher processes stateful-module tokens dif-
ferently than stateless ones:

1. Recognize a stateful-backed token based on host-visible

properties (such as wrapping-key identifier);

2. Unwrap the application-opaque region, recovering a VH
(virtual handle). The VH is system-unique, but it may
map to multiple module-resident handles (one per avail-
able backend). Since stateless tokens contain their entire
key material in encrypted form, and VHs of modest size
are implemented, a virtual handle can be embedded in a
token without application-visible changes (which, by
construction, can be restricted to size changes of opaque
regions). In systems with high-assurance separation
between applications and libraries, application-opaque
data can be unwrapped with a library-controlled key. If
regulatory or standards’ requirements do not allow soft-
ware unwrapping, stateful modules possess the wrap-
ping key, so unwrapping capability scales with module
count. VHs are unwrapped, but actual key material from
tokens is not unwrapped. Therefore even library-resi-
dent keys may decrypt tokens without violating security
assumptions;

3. Transform the virtual handle and a destination module
identifier (the latter from the dispatcher) to a module-
specific handle. The necessary lookup table maps virtual
handles to handles unique to each particular module, as
in the general case the same object may be addressed
through different handles in different stateful modules.
If the virtual handle designates an object not present in
any stateful module, the object is sent to a module first.
Once the object has been unwrapped within a module, it
has a module-specific handle and may be further pro-
cessed;

4. Submit user data to the dispatcher-designated stateful
module, using the retrieved handle to designate the key.

As shown in FIG. 1, the host-resident host library 101
includes objects in encrypted form, ready to be imported to
stateful backends. Since virtualized, host-resident keystores
are infinitely scalable, effective keystore capacity may grow
beyond the aggregate of stateful backends. A transport (wrap-
ping) key 143 is maintained within stateful modules 103, and
import keys 141, 142 from the host when needed. Since the
stateful modules 103 work with module-resident keys 141,
142, 143, algorithms known from cache management (for
example) are implemented to optimize the availability of
module-resident secrets.

When an object is created, it is generated within the target
module and export into the host-resident object store 135. In
this case, data does not include a token originated from the
host. Once a new object has been created, it is exported into
the host object store 135. For subsequent requests, the con-
trol/data flow described in FIG. 1 is applicable.

US 9,251,338 B2

7

In a typical enterprise environment, for highly available
objects, the newly generated module-resident object is
migrated into the host object store 135 before indicating
success. While this additional step increases key generation
latency, it is necessary to insure that any application-visible
object exists in multiple copies by the time it becomes appli-
cation-visible, and therefore it is already highly available/
reliable upon key generation. Key generation is usually infre-
quent, and key generation latency may be high, and the
additional latency is insignificant.

In exemplary embodiments, the systems and methods
described herein implement a system-unique identifier (i.e.,
the virtual handle 125) to designate key objects 136. A key
handle of modest size (at most tens of bytes) may describe all
realistic key-usage scenarios. A hard size limitation is that the
encrypted virtual handle fits within the application-opaque
regions 111, which contain entire encrypted keys. In exem-
plary embodiments, the host has a readily available mecha-
nism to assign globally-unique handles to every host-visible
key, and even independent host libraries may have access to
such a global virtual-handle database. Host code may need
further coordination (or centralized assignment) of virtual-
handle ranges to guarantee uniqueness. In exemplary
embodiments, a database mapping virtual handles and target
modules’ identifiers to module-specific handles (as the same
object may have been imported to different handles into dif-
ferent modules). In exemplary embodiments, the database
accommodates any foreseeable increase in the number of
modules. In addition, the host removes virtual handle data-
base entries corresponding to modules that have been
removed. Since the systems and methods described herein
remove state from modules, once an atomic host API call
terminates, only session-oriented (incremental) PKCS#11
objects are retained within modules in the long run. There-
fore, incremental objects (and their handles) are not repre-
sented, and only “stateless” objects (i.e., keys) need to be
represented by VHs.

In exemplary embodiments, the systems and methods
described herein exploit both reliable and unreliable com-
modity backends. In exemplary embodiments, backends with
commodity interfaces are implemented, but sufficient RAS
(reliability, availability, serviceability) to at least report (or
preferably, correct) transient errors can also be implemented.
Such backends do not need to provide further error checking.
In these cases, the system only increases scalability (both in
throughput and apparent module resource storage capability)
but does not need to add high-reliability. If the system is
implemented with backends of insufficient RAS coverage,
host library assistance is needed to perform calculations
redundantly. In such cases, host libraries need to use reliabil-
ity-enhancing methods known from, as an example, RAID
(redundant DASD) systems.

In exemplary embodiments, the systems and methods
described herein have considerable freedom balancing trans-
lation between host and module, as long as the host-observ-
able interface is unchanged. If master-key holders of other
systems introduce their key into the exemplary module, the
other systems’ tokens can be transparently mapped to the
exemplary system. For legacy users, tokens are remapped
once (“re-encipher”), and an updated blob is returned for
subsequent use, with a transformed version of the same key
material. Regardless of where translation occurs, the exem-
plary module code interprets legacy key tokens. However, if
host code maps user tokens to exemplary tokens transpar-
ently, the interpretation of legacy objects can be removed
from the request path. In that case, the cost of host lookups

10

35

40

45

50

55

60

65

8

reduces the overall request latency, as regular requests’ paths
only deals with native objects.

The exemplary systems and methods described herein
extend the well-known principles of redundant storage, rely-
ing on cryptography-specific capabilities to make even state-
ful translation transparent. The exemplary systems and meth-
ods described herein can utilize RAID configurations, and
also dynamically reconfigure backends since the remapping
layer can transparently modify backends’ configuration. The
exemplary systems and methods described herein can also be
applied to multiple service levels, controlling the number of
backends caching particular keys. Since the system can scale
the number of backends without limitations, complex ser-
vice-level hierarchies can be implemented with a sufficient
number of modules. Bandwidth management may be man-
aged entirely within the VH-mapping step, and it can be
added transparently to all other subsystems. A host dispatcher
can implement backend processing to manage keys “offline”,
not driven by requests. As an example, time not dedicated to
application requests can be implemented to populate newly
inserted modules with frequently used keys, to improve the
expected response time (or preemptively optimize overall
throughput when the host library is idle).

In exemplary embodiments, generic requirements may be
mapped onto regular PKCS#11 services as now described as
an example. Since single-pass operations are typically trivi-
ally remapped, on incremental operations are discussed. The
exemplary systems and methods described herein can be
implemented for incremental, stateless operations, as
described herein. As such, details of straightforward, pass-
through remapping of single-pass calls are omitted for illus-
trative purposes.

In exemplary embodiments, host libraries implement two
disjoint functionality layers, and their structure reflects this
difference. Caller-visible APIs handle session tracking,
datastream partitioning and reassembly, and further glue
operations necessitated by the mismatch between caller-vis-
ible and module APIs. For example, a lower level is added to
the system-wide cryptographic service (facility) to handle
system-wide operations. Several services are provided
including, but not limited to:

1. Assisting the facility with load balancing. Multiple facil-
ity instances may not be aware of all module-visible
operations, such as module load, while this system-wide
layer may have access to more, typically system-aggre-
gate details;

2. Mapping VHs to per-module object handles. This
remapping is system-unique, and serves all concurrent
facility users. VHs accommodate multiple facility
instances, which have allocated all their available
handles. Therefore VHs are longer than module handles
(i.e., over 32 bits in practical systems); and

3. Managing modules, including failures and planned
replacements or additions. This functionality bridges
facility and machine-specific operations, and is cur-
rently present within the facility. Certain operations,
such as dispatching actual PKCS#11 calls or load-bal-
ancing, may be performed in both layers. The system-
wide level shares code with the facility, with extensions
for system-wide operations.

In exemplary embodiments, VHs are system-wide visible
and map to a dynamic set of module-specific real handles. The
host assigns globally unique VHs to objects, and allows trans-
parent reconfiguration of VH-to-module-handle mappings. If
the system contains multiple host API instances, the system
assigns VHs uniquely, without conflicts between multiple
facility instances, for example. VHs of sufficient size, typi-

US 9,251,338 B2

9

cally of a few dozen bytes, allow for essentially unbounded
object scalability. Since host tokens are emulated with their
key material embedded, such VH state is available. In order to
enforce VH-to-module handle mappings, cryptographic mes-
sage authentication codes (MACs) are implemented on the
VH areas within FKTs if possible. Unkeyed hashes may be
used for the same purpose, if host tokens are so authenticated.
Given a host token, the VH reconstruction steps are the fol-
lowing:

1. Recognize FKTs and reroute them to VH reconstruction.
Let real host tokens pass to legacy cards;

2. Decrypt the “key material” within the FKT (the unwrap-
ping key is always resident within each module);

3. Verity that the recovered VH area is valid, and it’s MAC
(or at least digest) is correct;

4. Find (or let the caller specify) a suitable target module to
service the call. Knowledge of module-resident objects
is implemented to select the target module;

5. If the designated target module does not have a copy of
the required key, import the key from the low-level
object store (through a PKCS#11 UnwrapKey call); and

6. Return the module designation and the handle which
designates the VH’s object within the target module.
Since the exemplary systems and methods described
herein do not require object migration out of modules,
module-handle-to-VH reverse mapping may or may not
be implemented. In exemplary embodiments, imple-
mentations may optimize for a straightforward
VH-based hash scheme.

The exemplary systems and methods described herein
retain a low-level, host-resident object store as an authorita-
tive source for encrypted key objects. Modules store only a
cached subset of the object store, distributed within the back-
ing HSMs. Module-resident objects are caches of host-resi-
dent objects, since they are only copies, but may be accessed
faster (i.e., need not be imported into the target module before
use). The host library manages the aggregate “cache” avail-
able in the modules, including cache replacement. Session
objects within modules only temporarily, for the duration of
any single host call. Once the sequence of PKCS#11 calls is
terminated, any state is extracted (in a form that’s reusable for
further host-incremental calls) and the module-resident ver-
sion is discarded. Therefore, at a call boundary, modules are
essentially stateless (they contain arbitrarily disposable,
“read-only” objects) once a call returns to the caller. Caller-
visible libraries (such as independent facility instances) may
be implemented as layers to manage caching. However, host
code implementing the low-level object store and VH-to-
handle mappings can observe system-wide usage patterns,
and possibly tune cache management to fit the system work-
load. Newly introduced modules, or newly installed
machines, start with “empty” modules (i.e., only wrapping
keys, no objects). The backends are populated driven by
requests, caching host objects, as soon as they obtain a copy
of wrapping keys.

In exemplary embodiments, digest operations can operate
on cleartext and can be safely performed on the host. Host
code can exploit high-throughput engines, if available. The
host does not need to send digest operations to the backend,
and does not utilize a commodity backend’s lower-through-
putdigest service. The host library separates digital-signature
operations into digesting and actual public-key operation.
The initial digest is calculated on the host, delegating only the
public-key operation to a backend. For the DigestKey opera-
tion, if the host library requires the capability to digest secret
keys, intermediate digest structures become sensitive and
need to be transported between backends.

10

15

20

25

30

35

40

45

50

55

60

65

10

In exemplary embodiments, hash-based MAC (HMAC)
calculation is implemented on top of digesting and differs
from digesting since intermediate states are sensitive. Keep-
ing HMAC sessions on the host between incremental calls is
not conventionally possible with off-the-shelf PKCS#11
backends, due to the lack of standard state ex/import mecha-
nisms (i.e., PKCS#11 targets “deep” end-devices, not state-
less ones which transfer sensitive state with each call). As
such, in exemplary embodiments, single-pass HMAC calls,
as with other single-pass operations, are trivially remapped
with minimal modifications. As with other calls, the number
of possible parameter combinations is limited, most likely
served from small, fixed translation tables (e.g., mapping rule
arrays to PKCS#11 mechanism structures).

In exemplary embodiments, for secret-key MAC (signa-
tures), off-the-shelf PKCS#11 offers limited support for
secure-key MACs. Most of this functionality is broken down
to multiple PKCS#11 primitives, or added as custom exten-
sions. In exemplary embodiments, new algorithms as
described herein are implemented. However, conventional
PKCS#11 objects already support the necessary restrictions
to prevent a MAC key from decrypting, for example. Further
restrictions, such as removing the capability for certain key
sizes or specific algorithm sub-types can be performed at
crypto provider level, and therefore does not impact keytypes.

In exemplary embodiments, for public-key operations,
public-key services operate on single-pass data, or may be
decomposed into incremental and single-pass operations.
The incremental calls, if present, all update digests and may
be handled in the clear (i.e., as all input would be, by con-
struction, non-sensitive). In exemplary embodiments, the
host library performs this separation, and concentrates only
on the actual public-key operation. The systems and methods
described herein map public-key operations trivially. Signing
mechanisms are mapped from the host API to backend,
through simple, predefined tables (as the number of choices is
limited to a few variations). Module-specific handles are
recovered from a host token’s VH. Once the corresponding
public-key object is mapped into a module-handle, the back-
end operation is invoked directly, returning. As public-key
operations do not modify their own state (the systems and
methods described herein send single-pass, terminating calls
to these objects), they may be freely discarded from within a
module, if object-cache replacement requires this action.

In exemplary embodiments, for symmetric en/decryption,
the host API provides core symmetric modes, mainly those
based on electronic codebook (ECB) and cipher block chain-
ing (CBC) modes. In such cases, the host library collates input
streams, and only delegates full-block incremental calls to
modules (i.e., due to restrictions of the PKCS#11 API). Most
relevant modes may be built on top of such a streaming
implementation.

The systems and methods described herein map each incre-
mental (whole-block) update to a full PKCS#11 encryption/
decryption session, and “extract” the final state once this
sequence terminates. The systems and methods described
herein implement a full cryptlnit, crypt and cryptFinal
sequence for each incremental update. The host library main-
tains chaining state between these calls, in addition to any
blocking it may have already performed (i.e., chaining is of
the same size).

For ECB mode and related calls (such as CTR, which is
implemented through ECB), the system does not “chain”
between incremental calls. In such cases, the host library
generates entire blocks (from its internal object store) and
may discard all final states once the operation sequence ter-
minates.

US 9,251,338 B2

11

Modes derived from CBC “extract” their chaining state
once the corresponding cryptFinal callis issued, and retains it
on the host. The system may retain the last ciphertext block,
which is the chaining value used by CBC. As this intermediate
value may be obtained through calls of the original stateless
API, the system does not create new vulnerabilities by expos-
ing the chaining value to host code. In PKCS#11 terms, the
host retains the last ciphertext block and supplies it as the [V
of the subsequent cryptlnit call.

Currently implemented symmetric modes may be built
from primitives, if the host is allowed to manipulate the
plaintext on the host. If standards or other requirements man-
date processing within protected envelopes (which can’t be
enforced by off-the-shelf PKCS#11), a compatible replace-
ment is added as a custom PKCS#11 mechanism.

Modes which differ from ECB or CBC mainly in padding
(e.g., RFC#1423/PKCS padding) may be allowed to be
implemented on the host. Security is not impacted if interme-
diate results are made host-visible, as they would also be
obtainable through their underlying modes, therefore not
revealing illegal ciphertext that does not actually increase
security. For example, while a PKCS-padded CBC mecha-
nism may return a padding-related failure without revealing
cleartext, CBC-decrypting the ciphertext reveals the same
plaintext (without the padding-related error).

In exemplary embodiments, the backends’ PKCS#11 key
generation (for both secret keys and public key (PK) keypairs)
is extended to handle sufficient redundancy and performs the
following:

1. Map the host API key generation request into the equiva-

lent PKCS#11 call and mechanisms;

2. If the designated target module is full, discard objects
from it, which can also be performed iteratively, if key
generation fails due to lack of module resources;

3. Generate the module-resident key and designate the new
object as sensitive and extractable;

4. Return any possible key-generation failures to the caller,
if it is caused by user-originated errors, such as bad
parameter combinations. In exemplary embodiments,
predefined, fixed mappings can be implemented, and
key generation requests can be assumed to fail due to
user error. Backends do not exhaust their resources. If
they do, remove objects from the target module and retry
until the resource bottleneck is removed;

5. Export the newly generated object, encrypted by the
object wrapping key. Once this extracted version is
available in the host object store, the key effectively
becomes redundant, and safe to report to the caller;

6. Add the newly generated key to the handle database,
assigning anew VH. From this point, the new VH may be
“announced” and used;

7. Create a FKT containing the newly created VH within its
encrypted key-material section. Encrypt the FKT with
the system-global wrapping key; and

8. Return the FKT to the caller. Apart from the reported
controlling master key (MK) (through the MK pattern
within the token), it is indistinguishable from real host-
resident tokens. The key generation sequence enables
that user-visible keys are already in highly-available
form when the caller receives ownership of their newly
created object. Overhead is limited to the export opera-
tion, negligible for public-key pairs. All required ser-
vices are provided by off-the-shelf PKCS#11 calls.

In exemplary embodiments, while host-resident keys are
usually not destroyed (within limitations), key objects can be
removed from backends. During cache replacement, module-
resident keys may need to be removed. This removal purges

10

15

20

25

30

35

40

45

50

55

60

65

12

the module-resident copy, retaining the encrypted copy
within the host object store. Since incremental operations to
return their state to the host between calls, module-resident
objects may be discarded at any time (since they may always
berestored from the object store). The exemplary systems and
methods described herein implement a simple reference
count to special-case objects which are utilized, and remove
only ones which are then not used. The host-resident handle
database may grow essentially unbounded. As long as hosts
may retain a host-resident object, and its controlling MK is
reachable, the object is not removed from the host store.

The remapping of relevant subsets of host-centric APIs to
commodity CSPs’ interfaces can be performed in any suitable
computing system as now described. FIG. 3 illustrates an
exemplary embodiment of a system 300 for remapping rel-
evant subsets of host-centric APIs to commodity CSPs’ inter-
faces. The methods described herein can be implemented in
software (e.g., firmware), hardware, or a combination
thereof. In exemplary embodiments, the methods described
herein are implemented in software, as an executable pro-
gram, and is executed by a special or general-purpose digital
computer, such as a personal computer, workstation, mini-
computer, or mainframe computer. The system 300 therefore
includes general-purpose computer 301.

In exemplary embodiments, in terms of hardware architec-
ture, as shown in FIG. 3, the computer 301 includes a proces-
sor 305, memory 310 coupled to a memory controller 315,
and one or more input and/or output (I/O) devices 340, 345 (or
peripherals) that are communicatively coupled via a local
input/output controller 335. The input/output controller 335
can be, but is not limited to, one or more buses or other wired
or wireless connections, as is known in the art. The input/
output controller 335 may have additional elements, which
are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable commu-
nications. Further, the local interface may include address,
control, and/or data connections to enable appropriate com-
munications among the aforementioned components.

The processor 305 is a hardware device for executing soft-
ware, particularly that stored in memory 310. The processor
305 can be any custom made or commercially available pro-
cessor, a central processing unit (CPU), an auxiliary proces-
sor among several processors associated with the computer
301, a semiconductor based microprocessor (in the form of a
microchip or chip set), a macroprocessor, or generally any
device for executing software instructions.

The memory 310 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as dynamic RAM (DRAM), static RAM
(SRAM), synchronous DRAM (SDRAM), etc.)) and non-
volatile memory elements (e.g., read only memory (ROM),
erasable programmable read only memory (EPROM), elec-
tronically erasable programmable read only memory (EE-
PROM), programmable read only memory (PROM), tape,
compact disc read only memory (CD-ROM), disk, diskette,
cartridge, cassette or the like, etc.). Moreover, the memory
310 may incorporate electronic, magnetic, optical, and/or
other types of storage media. Note that the memory 310 can
have a distributed architecture, where various components are
situated remote from one another, but can be accessed by the
processor 305.

The software in memory 310 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func-
tions. In the example of FIG. 3, the software in the memory
310 includes the remapping methods described herein in
accordance with exemplary embodiments and a suitable oper-

US 9,251,338 B2

13

ating system (OS) 311. The operating system 311 essentially
controls the execution of other computer programs, such the
remapping systems and methods as described herein, and
provides scheduling, input-output control, file and data man-
agement, memory management, and communication control
and related services.

The remapping methods described herein may be in the
form of a source program, executable program (object code),
script, or any other entity comprising a set of instructions to be
performed. When a source program, then the program needs
to be translated via a compiler, assembler, interpreter, or the
like, which may or may not be included within the memory
310, so as to operate properly in connection with the OS 311.
Furthermore, the remapping methods can be written as an
object oriented programming language, which has classes of
data and methods, or a procedure programming language,
which has routines, subroutines, and/or functions.

In exemplary embodiments, a conventional keyboard 350
and mouse 355 can be coupled to the input/output controller
335. Other output devices such as the /O devices 340, 345
may include input devices, for example but not limited to a
printer, a scanner, microphone, and the like. Finally, the I/O
devices 340, 345 may further include devices that communi-
cate both inputs and outputs, for instance but not limited to, a
network interface card (NIC) or modulator/demodulator (for
accessing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface, a
bridge, a router, and the like. The system 300 can further
include a display controller 325 coupled to a display 330. In
exemplary embodiments, the system 300 can further include
a network interface 360 for coupling to a network 365. The
network 365 can be an IP-based network for communication
between the computer 301 and any external server, client and
the like via a broadband connection. The network 365 trans-
mits and receives data between the computer 301 and external
systems. In exemplary embodiments, network 365 can be a
managed [P network administered by a service provider. The
network 365 may be implemented in a wireless fashion, e.g.,
using wireless protocols and technologies, such as WiFi,
WiMax, etc. The network 365 can also be a packet-switched
network such as a local area network, wide area network,
metropolitan area network, Internet network, or other similar
type of network environment. The network 365 may be a fixed
wireless network, a wireless local area network (LAN), a
wireless wide area network (WAN) a personal area network
(PAN), a virtual private network (VPN), intranet or other
suitable network system and includes equipment for receiv-
ing and transmitting signals.

If'the computer 301 is a PC, workstation, intelligent device
or the like, the software in the memory 310 may further
include a basic input output system (BIOS) (omitted for sim-
plicity). The BIOS is a set of essential software routines that
initialize and test hardware at startup, start the OS 311, and
support the transfer of data among the hardware devices. The
BIOS is stored in ROM so that the BIOS can be executed
when the computer 301 is activated.

When the computer 301 is in operation, the processor 305
is configured to execute software stored within the memory
310, to communicate data to and from the memory 310, and to
generally control operations of the computer 301 pursuant to
the software. The remapping methods described herein and
the OS 311, in whole or in part, but typically the latter, are
read by the processor 305, perhaps buffered within the pro-
cessor 305, and then executed.

When the systems and methods described herein are imple-
mented in software, as is shown in FIG. 3, the methods can be

10

15

20

25

30

35

40

45

50

55

60

65

14

stored on any computer readable medium, such as storage
320, for use by or in connection with any computer related
system or method.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

US 9,251,338 B2

15

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In exemplary embodiments, where the remapping methods
are implemented in hardware, the remapping methods
described herein can implemented with any or a combination
of the following technologies, which are each well known in
the art: a discrete logic circuit(s) having logic gates for imple-
menting logic functions upon data signals, an application
specific integrated circuit (ASIC) having appropriate combi-
national logic gates, a programmable gate array(s) (PGA), a
field programmable gate array (FPGA), etc.

Technical effects include replacement of stateless, secure
cryptographic providers with commodity backends of com-
parable capabilities but finite, non-virtualized keystores. The

10

15

20

25

30

35

40

45

50

55

60

65

16

exemplary systems and methods described herein provide the
following capabilities while routing traffic to commodity pro-
viders:

1. Allow request bandwidth and apparent backend keystore
(key count) capability beyond that of any finite backend;

2. Do not expose sensitive material to the host;

3. Do not need to synchronize the state of one backend to
another: backends are implemented as cache of a central,
host-based keystore;

4. Implement commodity providers with minimal customi-
zation;

5. Transparently support any stateless or handle-based
abstract host interface, as long as a sufficiently large
opaque token section, or an abstract handle is available.
The necessary translation is added to be able to turn the
same token/handle into multiple representations,
depending on backend;

6. Continue to represent the same object in incompatible
providers as an unchanged, single logical stream, even
when moved between different physical backends; and

7. Transparently add backends, or recover from the loss of
any single backend, similar to fully virtualized stateless
providers.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

US 9,251,338 B2

17 18

What is claimed is: retrieving a virtualized handle in the stateless host library;
1. A method for embedding a handle of a module-centric de-serializing a serialized state of the handle in the target
commodity cryptographic service provider within a host- hardware security module based on the transforming of
opaque region of a host-centric stateless application program- the handle into the hardware security module readable

ming interface, comprising: 5 obj ect; o)
receiving the handle by a handle-oriented host library asso- restoring a serialized state of the target hardware security
ciated with the host-centric application programming module by passing the handle backto a host token recov-
interface; ery of the stateless host library, wherein the serialized

state is restored from the virtualized handle; and
10 wherein with respect to dispatching, by the module-centric
commodity cryptographic service provider, the trans-
formed handle, further comprising:
receiving the transformed handle by a commodity ser-
vice provider dispatch of the module-centric stateful
15 modules of the module-centric commodity crypto-
graphic service provider;
dispatching the transformed handle by the commodity
service provider dispatch to the stateless module.
2. The method of claim 1, wherein the stateless host library
20 includes an object store having several objects.
3. The method of claim 1, further comprising:
passing the transformed handle as the virtualized handle to
a handle database by the stateless host library;
passing the transformed handle to the module-centric state-

transforming the handle into a hardware security module
readable object by associating the handle with a host-
resident key token of the handle-oriented host library to
produce a transformed handle by the handle-oriented
host library, the host-resident key token comprising
host-opaque data, the transformed handle being associ-
ated with the host-opaque data;

selecting, in a stateless host library, a target hardware secu-
rity module from a plurality of hardware security mod-
ules, in accordance with the transforming of the handle
and based on object characteristics of the plurality of
hardware security modules;

passing the transformed handle to module-centric stateful
modules of the module-centric commodity crypto-
graphic service provider, each module-centric stateful
module including a wrapping key accessible by the tar-

get hardware security module of the stateless host 25 ful modules, each stateful module including a plurality
library:; of control keys, a plurality of data keys, and the wrap-
’ ping key; and

dispatching, by the module-centric commodity crypto-
graphic service provider, the transformed handle to a
virtualized handle in host token recovery of the stateless
host library as a module identifier to a handle database,
and to a stateless module having a master key; L

passing the transformed handle to the host token recovery
of'the stateless host library, in preparation for the restor-
30 ing of the serialized state.

